A specialisation of Jacobian to handle non-analytical terms. More...
Public Member Functions | |
KOKKOS_FUNCTION double | jacobian (PositionCoordinate const &coord) const final |
Compute the Jacobian, the determinant of the Jacobian matrix of the mapping. More... | |
KOKKOS_FUNCTION void | inv_jacobian_matrix (PositionCoordinate const &coord, Matrix_2x2 &matrix) const final |
Compute full inverse Jacobian matrix. More... | |
KOKKOS_FUNCTION double | inv_jacobian_11 (PositionCoordinate const &coord) const final |
Compute the (1,1) coefficient of the inverse Jacobian matrix. More... | |
KOKKOS_FUNCTION double | inv_jacobian_12 (PositionCoordinate const &coord) const final |
Compute the (1,2) coefficient of the inverse Jacobian matrix. More... | |
KOKKOS_FUNCTION double | inv_jacobian_21 (PositionCoordinate const &coord) const final |
Compute the (2,1) coefficient of the inverse Jacobian matrix. More... | |
KOKKOS_FUNCTION double | inv_jacobian_22 (PositionCoordinate const &coord) const final |
Compute the (2,2) coefficient of the inverse Jacobian matrix. More... | |
Public Member Functions inherited from Jacobian< PositionCoordinate > | |
virtual KOKKOS_FUNCTION void | jacobian_matrix (PositionCoordinate const &coord, Matrix_2x2 &matrix) const =0 |
Compute full Jacobian matrix. More... | |
virtual KOKKOS_FUNCTION double | jacobian_11 (PositionCoordinate const &coord) const =0 |
Compute the (1,1) coefficient of the Jacobian matrix. More... | |
virtual KOKKOS_FUNCTION double | jacobian_12 (PositionCoordinate const &coord) const =0 |
Compute the (1,2) coefficient of the Jacobian matrix. More... | |
virtual KOKKOS_FUNCTION double | jacobian_21 (PositionCoordinate const &coord) const =0 |
Compute the (2,1) coefficient of the Jacobian matrix. More... | |
virtual KOKKOS_FUNCTION double | jacobian_22 (PositionCoordinate const &coord) const =0 |
Compute the (2,2) coefficient of the Jacobian matrix. More... | |
A specialisation of Jacobian to handle non-analytical terms.
In this case the inverse and the determinant are calculated from the Jacobian matrix in the same way regardless of the implementation of the calculation of the Jacobian itself.
PositionCoordinate | The type of the coordinate at which the Jacobian matrix can be calculated. |
|
inlinefinalvirtual |
Compute the Jacobian, the determinant of the Jacobian matrix of the mapping.
[in] | coord | The coordinate where we evaluate the Jacobian. |
Implements Jacobian< PositionCoordinate >.
|
inlinefinalvirtual |
Compute full inverse Jacobian matrix.
For some computations, we need the complete inverse Jacobian matrix or just the coefficients. The coefficients can be given indendently with the functions inv_jacobian_11, inv_jacobian_12, inv_jacobian_21 and inv_jacobian_22.
[in] | coord | The coordinate where we evaluate the Jacobian matrix. |
[out] | matrix | The inverse Jacobian matrix returned. |
Implements Jacobian< PositionCoordinate >.
|
inlinefinalvirtual |
Compute the (1,1) coefficient of the inverse Jacobian matrix.
Be careful because not all mappings are invertible, especially at the center point.
[in] | coord | The coordinate where we evaluate the inverse Jacobian matrix. |
Implements Jacobian< PositionCoordinate >.
|
inlinefinalvirtual |
Compute the (1,2) coefficient of the inverse Jacobian matrix.
Be careful because not all mappings are invertible, especially at the center point.
[in] | coord | The coordinate where we evaluate the inverse Jacobian matrix. |
Implements Jacobian< PositionCoordinate >.
|
inlinefinalvirtual |
Compute the (2,1) coefficient of the inverse Jacobian matrix.
Be careful because not all mappings are invertible, especially at the center point.
[in] | coord | The coordinate where we evaluate the inverse Jacobian matrix. |
Implements Jacobian< PositionCoordinate >.
|
inlinefinalvirtual |
Compute the (2,2) coefficient of the inverse Jacobian matrix.
Be careful because not all mappings are invertible, especially at the center point.
[in] | coord | The coordinate where we evaluate the inverse Jacobian matrix. |
Implements Jacobian< PositionCoordinate >.