|
virtual KOKKOS_FUNCTION double | jacobian (PositionCoordinate const &coord) const =0 |
| Compute the Jacobian, the determinant of the Jacobian matrix of the mapping. More...
|
|
virtual KOKKOS_FUNCTION void | jacobian_matrix (PositionCoordinate const &coord, Matrix_2x2 &matrix) const =0 |
| Compute full Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | jacobian_11 (PositionCoordinate const &coord) const =0 |
| Compute the (1,1) coefficient of the Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | jacobian_12 (PositionCoordinate const &coord) const =0 |
| Compute the (1,2) coefficient of the Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | jacobian_21 (PositionCoordinate const &coord) const =0 |
| Compute the (2,1) coefficient of the Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | jacobian_22 (PositionCoordinate const &coord) const =0 |
| Compute the (2,2) coefficient of the Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION void | inv_jacobian_matrix (PositionCoordinate const &coord, Matrix_2x2 &matrix) const =0 |
| Compute full inverse Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | inv_jacobian_11 (PositionCoordinate const &coord) const =0 |
| Compute the (1,1) coefficient of the inverse Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | inv_jacobian_12 (PositionCoordinate const &coord) const =0 |
| Compute the (1,2) coefficient of the inverse Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | inv_jacobian_21 (PositionCoordinate const &coord) const =0 |
| Compute the (2,1) coefficient of the inverse Jacobian matrix. More...
|
|
virtual KOKKOS_FUNCTION double | inv_jacobian_22 (PositionCoordinate const &coord) const =0 |
| Compute the (2,2) coefficient of the inverse Jacobian matrix. More...
|
|
template<class PositionCoordinate>
class Jacobian< PositionCoordinate >
An operator to calculate the Jacobian matrix and its inverse.
All operators which can calculate terms of the Jacobian matrix should inherit from this class.
- Template Parameters
-
PositionCoordinate | The type of the coordinate at which the Jacobian matrix can be calculated. |
template<class PositionCoordinate >
virtual KOKKOS_FUNCTION double Jacobian< PositionCoordinate >::jacobian_11 |
( |
PositionCoordinate const & |
coord | ) |
const |
|
pure virtual |
Compute the (1,1) coefficient of the Jacobian matrix.
For a mapping given by \( \mathcal{F} : (r,\theta)\mapsto (x,y) \), the (1,1) coefficient of the Jacobian matrix is given by \( \frac{\partial x}{\partial r} \).
- Parameters
-
[in] | coord | The coordinate where we evaluate the Jacobian matrix. |
- Returns
- A double with the value of the (1,1) coefficient of the Jacobian matrix.
template<class PositionCoordinate >
virtual KOKKOS_FUNCTION double Jacobian< PositionCoordinate >::jacobian_12 |
( |
PositionCoordinate const & |
coord | ) |
const |
|
pure virtual |
Compute the (1,2) coefficient of the Jacobian matrix.
For a mapping given by \( \mathcal{F} : (r,\theta)\mapsto (x,y) \), the (1,2) coefficient of the Jacobian matrix is given by \( \frac{\partial x}{\partial \theta} \).
- Parameters
-
[in] | coord | The coordinate where we evaluate the Jacobian matrix. |
- Returns
- A double with the value of the (1,2) coefficient of the Jacobian matrix.
template<class PositionCoordinate >
virtual KOKKOS_FUNCTION double Jacobian< PositionCoordinate >::jacobian_21 |
( |
PositionCoordinate const & |
coord | ) |
const |
|
pure virtual |
Compute the (2,1) coefficient of the Jacobian matrix.
For a mapping given by \( \mathcal{F} : (r,\theta)\mapsto (x,y) \), the (2,1) coefficient of the Jacobian matrix is given by \( \frac{\partial y}{\partial r} \).
- Parameters
-
[in] | coord | The coordinate where we evaluate the Jacobian matrix. . |
- Returns
- A double with the value of the (2,1) coefficient of the Jacobian matrix.
template<class PositionCoordinate >
virtual KOKKOS_FUNCTION double Jacobian< PositionCoordinate >::jacobian_22 |
( |
PositionCoordinate const & |
coord | ) |
const |
|
pure virtual |
Compute the (2,2) coefficient of the Jacobian matrix.
For a mapping given by \( \mathcal{F} : (r,\theta)\mapsto (x,y) \), the (2,2) coefficient of the Jacobian matrix is given by \( \frac{\partial y}{\partial \theta} \).
- Parameters
-
[in] | coord | The coordinate where we evaluate the Jacobian matrix. |
- Returns
- A double with the value of the (2,2) coefficient of the Jacobian matrix.