Transport barrier in 5D gyrokinetic flux-driven simulations

Abstract

Abstract Two ways for producing a transport barrier through strong shear of the E × B poloidal flow have been investigated using GYSELA gyrokinetic simulations in flux-driven regime. The first one uses an external momentum (i.e. vorticity) source that locally polarizes plasma, and second enforces steep density profile also stabilizes ion temperature gradient (ITG) instability modes linearly. Both cases show very low local turbulent heat diffusivity coefficient <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML" display=“inline” overflow=“scroll”> mml:msubsup mml:mrow mml:miχ</mml:mi> </mml:mrow> mml:mtextT</mml:mtext> mml:mtextturb</mml:mtext> </mml:msubsup> </mml:math> slight increase core pressure when threshold ${\omega }{E\times B}\approx {\bar{\gamma }}{\text{lin}}$?> mml:msub mml:miω</mml:mi> mml:miE</mml:mi> mml:mo×</mml:mo> mml:miB</mml:mi> </mml:msub> mml:mo≈</mml:mo> <mml:mover accent=“true”> mml:miγ</mml:mi> mml:mo¯</mml:mo> </mml:mover> mml:mtextlin</mml:mtext> (respectively rate average linear growth ITG) is reached, validating previous numerical results. This quench are signs formation. behaviour result reduced turbulence intensity which strongly correlates with shearing structures as evidenced by reduction auto-correlation length potential fluctuations well k θ spectrum. Moreover, small shift towards smaller wavenumber observed vorticity region could be linked to tilt direction.

Publication
Nuclear Fusion