Mappings

This folder contains code describing tools for handling different coordinate systems.

The current coordinate transformations implemented are:

Analytically invertible coordinate transformations

Circular coordinate transformation

  • Mapping (CircularToCartesian):
\[ \left\{ \begin{aligned} & x(r,\theta) = r \cos(\theta), \\ & y(r,\theta) = r \sin(\theta). \end{aligned} \right. \]
\[ J (r,\theta) = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \\ \end{bmatrix}. \]

with \(\det(J) = r\).

  • Inverse mapping (CartesianToCircular):
\[ \left\{ \begin{aligned} & r(x,y) = \sqrt{x^2 + y^2}, \\ & \theta(x,y) = \text{atan2}(y, x). \end{aligned} \right. \]

Czarny coordinate transformation

  • Mapping (CzarnyToCartesian): Taking \(\varepsilon \in ]0,1[\) and \(e\) as parameters.
\[ \left\{ \begin{aligned} & x(r,\theta) = \frac{1}{\varepsilon} \left( 1 - \sqrt{1 + \varepsilon(\varepsilon + 2 r \cos(\theta))} \right), \\ & y(r,\theta) = \frac{e\xi r \sin(\theta)}{2 -\sqrt{1 + \varepsilon(\varepsilon + 2 r \cos(\theta))}}. \end{aligned} \right. \]

with \(\xi = 1/\sqrt{1 - \varepsilon^2 /4}\).

\[ J (r,\theta) %= % \begin{bmatrix} % -\frac{\cos(\theta)}{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} % & % \frac{r\sin(\theta)}{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} % \\ % \frac{\cos(\theta)}{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} % \frac{e\varepsilon \xi r \sin(\theta)}{\left(2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}\right)^2} % + % \frac{e \xi \sin(\theta)}{2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} % & % \frac{-r\sin(\theta)}{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} % \frac{e\varepsilon \xi r \sin(\theta)}{\left(2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}\right)^2} % + % \frac{e \xi r\cos(\theta)}{2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} % \\ % \end{bmatrix} = \frac{1}{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} \begin{bmatrix} -1 & 0 \\ \frac{e\varepsilon \xi r \sin(\theta)}{\left(2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}\right)^2} & \frac{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}}{2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}} \\ \end{bmatrix} \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \\ \end{bmatrix}. \]

with \(\det(J) = \frac{-r}{\sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}}\frac{e \xi}{2 - \sqrt{1 + \varepsilon(\varepsilon + 2r\cos(\theta))}}\).

  • Inverse mapping (CartesianToCzarny): Taking \(\varepsilon \in ]0,1[\) and \(e\) as parameters.
\[ \left\{ \begin{aligned} & r(x,y) = \sqrt{\frac{y^2 (1+\varepsilon x)^2}{e^2\xi^2+0.25(\varepsilon x^2-2x-\varepsilon)^2}}, \\ & \theta(x,y) = \text{atan2}(2y (1+\varepsilon x), e \xi (\varepsilon x^2 - 2x-\varepsilon)). \end{aligned} \right. \]

Barycentric coordinate transformation

  • Mapping (BarycentricToCartesian):
\[ (c_1, c_2, c_3) \rightarrow (x, y). \]

Discrete coordinate transformation defined on B-splines

  • Mapping (DiscreteToCartesian)
\[ \left\{ \begin{aligned} & x(r,\theta) = \sum_k c_{x,k} B_k(r,\theta) , \\ & y(r,\theta) = \sum_k c_{y,k} B_k(r,\theta) . \end{aligned} \right. \]

Combined coordinate transformation which combines two of the coordinate transformations above

The tools are:

  • InverseJacobianMatrix : this tool calculates the inverse Jacobian matrix on the specified coordinate system.
  • InvJacobianOPoint : this tool calculates the inverse Jacobian matrix at the O-point on the specified coordinate system.
  • MetricTensorEvaluator : this tool calculates the metric tensor associated with a coordinate transformation.
  • VectorMapper : this tool helps when converting vectors stored in a VectorField from one coordinate system to another.
  • other static analysis tools found in mapping_tools.hpp