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This document discusses the physics of Landau damping and Bump-on-tail instability on the
basis of a 2-dimensional kinetic model (1D-1V). They both rely on the same equations, namely
Vlasov for the electrons (ions are assumed at rest) and Poisson. The only difference comes
from the equilibrium distribution function one considers, which is either a centered Maxwellian
(Landau) or a centered Maxwellian with a bump on the tail (bump-on-tail). Wile the former is
stable — energy is transferred from the electrostatic wave to particles, the latter reveals unstable
— the perturbed wave grows exponentially in time in the linear regime.

1 Resonance and Landau damping

Following the pioneering work of Landau on the subject in 1946EI, one considers the collisionless
dynamics of non relativistic electrons, embedded in a strong uniform magnetic field. The problem
is assumed to be electrostatic, and the ions are at rest with a density ng. The electron distribution
function f and the electric potential ¢ then compose a self consistent system governed by the
Vlasov and Poisson equations:

Orf +00uf + 0,00y f =0 (1)
02 = +Oofdv— 1

Here, the radial position r along the magnetic field is normalized to the Debye length x = r/Ap =
r/(aoT/neeQ)l/z, time ¢ by the inverse of the electron plasma frequency 7 = wpet =vret/Ap and
velocity by the thermal velocity vy, = (Te /me)l/ 2. v =v/vre. Also, the distribution function
is normalized by vre/ne (f — fvre/ne) and the electric potential ® by T./e: ¢ = e®/T,. The
problem is two-dimensional in phase space (z,v). We will focus on the linear characteristics of

the system ().

'L.D. Landau (1946), "On the vibrations of the electronic plasma”, in "Collected papers of L.D.Landau", D.
Ter Haar Editor, Pergamon Press, 1965, 61, p.445



The Vlasov equation can be rewritten in the Hamiltonian framework. Let H be the dimen-
sionless Hamiltonian of the system, sum of kinetic and potential energies:
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H=—- 2
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the minus sign coming from the electron charge. Then, eq.(I)) can be recast as follows:
o0f —{H,f}=0 (3)

with {H, f} the Poisson brackets: {H, f} = 0,HOyf — 0, HO,f (notice that it also admits the
equivalent expression: {H, f} = 0,(f0,H) — 0,(f0,H)). = and v are canonically conjugated
with respect to H:

dix = O0,H=v (4)
dv = —0,H = 8,¢ (5)

This formulation allows one to straightforwardly show that both the total entropy S = —(f In f)4.,
and energy € = & [(v? )z + (( xgb) >$] are conserved, where the brackets (...), , stand for the
integral over the entlre phase space ( f dz f do...

Indeed, multiplying eq.. by H and 1ntegrat1ng over space and velocity leads to:

(O — 5 (2, £)),, =0

Assuming periodic boundary conditions in z, the second term vanishes (use the second expression
of the Poisson brackets). The former contains two contributions. One associated to the energy
of the particles: %(1)2]“)“,, the other one associated to the waves: <q§8tf>mv Using Poisson
and integrating by part, this latter term can be recast as (03¢ 0t(020))z = d—§<( 0:¢)?)z, which
completes the demonstration.

A similar analysis can be done for the entropy. Noticing that (fln f) =0 +1Inf)f" (where the
prime ’ denotes any derivative with respect to ¢, x or v), one gets: dtS =—((14+In f){H, f}ap =

—({H, fIn f}>x,v =0.

1.1 The dispersion relation

Let us consider perturbations around a given stationary equilibrium, characterized by a vanish-
ing electric field, ¢y = 0. The Vlasov equation constrains the equilibrium distribution function
to depend on the velocity only: feq(v). The total distribution function f(x,v,t) then takes the
form: f(z,v,t) = foq(v) + f(x,v,t), with (f) = 0 by definition. Here, the brackets refer to space
average.

In the limit of small perturbations f < Jeq; the non linear term can be linearized and
restricted to 9y 8, feq — the non linearity 0y ) Oy f being of the second order. At leading order,
the system . ) then reduces to:

O f +v0uf + 00 Dyfeqg =0 (6)
2p = +Oofdv

Consistently with the hypothesis ¢., = 0, the electron and ion equilibrium densities are equal to
ng.



Since the system @ is linear and fe; depends on the velocity only, plane waves of the form
exp{i(kx — wt)} are eigenvectors [J| . For such waves, the linearized system transforms into:

_i(w - kv)fk,w + ’ik&k,w avfeq =0
R too
kP pp s = Jrwdv

Combining these two equations leads to the dispersion relation:

oo kavfeq
w—kv

D(k,w) = k? +/

— 00

dv=20 (7)

As such, the dispersion relation remains ill posed. Indeed, the integrand contains the pole w/k
when w is real — corresponding to the resonant condition w = kv from the physical point of
view. So as to ensure the continuity of the integral when w crosses the real axesﬂ the integral
needs being analytically continued. Such an analytic continuation proceeds by the deformation
of the integration contour into the complex plane, so as to circumscribe the pole. As detailed in
Appendix [A] the result then depends of the choice of the new contour, and more precisely on
whether the pole is encircled in the upper or in the lower part of the imaginary domain of the
complex plane (see ﬁg. The mathematics do not provide any preference for this choice: only
the physics can bring some constraints to decide which contour, if any, should be chosen.

The crucial breakthrough of Landau was to remark that any real value of w was not permitted.
Landau invoked the causality principle, which states that any physical process originates from a
cause. Such a principle then imposes any wave to vanish at ¢ — —oco. Consequently, any real
w should be understood as, and replaced by, w + i€, with € > 0. This is usually referred to as
Landau’s prescription. In this case, the wave exp{i(kx—wt)} transforms into exp{i(kz—wt)+et},
which vanishes at ¢ — —o0, consistently with the causality principle. As shown in Appendix [A]
such an integral is equivalent to choosing one of the two contours of integration mentioned above.
As we will see hereafter, such a causality principle leads to fundamental physical processes.

1.2 Consequence of Landau’s prescription

So as to ensure the analytic continuation, and following Landau’s prescription regarding the
contour of integration, the dispersion relation eq. should be understood as follows, as long as
the imaginary part of w is zero S(w) = 0 (the general case w € C makes use of the Fried and
Conte function when f,, is Maxwellian, as detailed in Appendix :

+oo
D(k,w) = k* + lim _ROufeq

=0+ J_oo w — kv +ie

dv=0 (8)

Multiplying both numerator and denominator of the integrand by the complex conjugate leads
to the two following integrals:

oo av e oo —k av e oo av e
/ _ Ovfeq , dv—/ (W = kv) Oufeg v) fqdv—i/ _Oufeq dv
oo w— kv i€ oo (w—Fkv)2 4 €2 oo (W —kv)? 4 €

?Landau first introduced the concept of causality in this problem, by noticing that the waves should vanish
at t — —oo. In this framework, Laplace transform in time should be preferred. However, such a change does
not modify the dispersion relation. The rigorous treatment can be found, for instance, in the original paper by
Landau (1946).

3Notice that such a property is not mandatory a priori: imposing the continuity of the integral reveals a strong
assumption, with critical consequences that are detailed below.



In the limit e — 0T, the first integral is nothing but the principal par‘ﬂ As far as the second
integral is concerned, it involves the Lorentzian function of the type L(Q) = ¢/(Q% + €2). L.
peaks at e~ ! for Q = 0, and its half width at half maximum is equal to e. It tends to the Dirac
distribution 7(€2) when € Vanishesﬂ. Should € remain finite because it would be governed by
some physical process (such as collisions and turbulence), the Dirac should then be replaced by
the finite width Lorentzian. In this case, the resonance condition would be broadened, and occur
up to the distance €/k around the pole v = w/k. In the end, eq.(8) leads to:

Dk, w) :k2+P/

—00

Ok Oy feq _imk
w — kv dv |k’ 0 fe‘I‘v =w/k =0 (9)

where P [ stands for the principal part of the integral, namely:

Too dg ro—e dx Too dg
P / = lim / + /
—00 L — X e—0 —c0 T —Xg zo+e L — L0
Details of the treatment can be found in various books [ﬂ The imaginary part of the dispersion
relation accounts for the resonance.

1.3 Landau damping

As we will discuss here, the correct treatment of the pole (or "resonance" when adopting the
physicist point of view) w = kv in the dispersion relation eq.@, leading to the imaginary term
D; = —n(k/|k|) Ovfeql,—,, x> gOverns an important piece of physics.

1.3.1 Analytic treatment in a limit case

The dispersion relation eq.@ cannot be solved analytically without making simplifying assump-
tions. Such an approach is detailed in Appendix [C] There, Langmuir waves are shown to be
damped, the damping rate resulting from the treatment introduced by Landau.

In the general case, i.e. without any assumption regarding either the real and imaginary
parts of the frequency w or the wave vector k, eq.@ requires a numerical treatment. This latter
approach is detailed in next section.

4Pirst decompose the integral in two parts: f"?: 32‘7_‘52) dv = j”io 329_‘57:) dv + f+°° 329_‘57:) dv, with v, = w/k

the phase velocity and 2 = w — kv. With the change of variable v — 2, these integrals read: f+;° 321(:) dv

fo+oo %_:?/k)% + f_ Wd@ Secondly, notice that f %QG_,E? dQ = f_ ¢ Glemoe >dw where

the bijective change of variable Q@ — w = —v/Q? + €2 has been done in the R_ half space (in partlcular, wdw =
QdQ). Provided G is continuous in R_, then the latter integral reduces to f?; @dw in the limit ¢ — 07.
A similar treatment can be performed for the integral from 0 to +o0o. Adding both contributions leads to the
expression of the principal part.

Then: +oo e dv __ [too € __ sign(e) f+oo dy

®Let’s introduce Q = w — kv. where y = Q/e.

—00 (w—kv)2+e2 — J-oo Q24e2 \k\ - || o 1+y2?
Further defining 6 such that tan § = y, one finds: f+:o° 113; f”wm df = 7. Hence, the integral of the Lorentzian

function L.(Q) = ¢/(Q% 4+ ¢*) does not depend on the magnitude of e. Furthermore, its maximum is equal to 1/,
while its width at half the maximum is 2e. Such characteristics lead to the conclusion that lim,_ o+ Le(Q) = ().
Finally, remember that §(w — kv) = d(w/k — v)/|k|.

Ssee for instance “Introduction to Plasma Physics”, R.J. Goldston and P.H. Rutherford, Institute of Physics
Publishing (2003)



1.3.2 Numerical treatment using the Plasma Dispersion Function

Injecting the Maxwellian equilibrium distribution function eq. in the dispersion relation

eq. leads to:
. +oo o=v%/2 4y
Dk,w)=1+k —w/ — =0
( ) oo W —kv£27
where the integral should be properly analytically continued. Such an integral is actually related
to the so-called Plasma Dispersion Function Z(() given in Appendix It can be rewritten as

follows:

D(k,w)=1+k +(Z() =0 (10)

where ¢ = w/(\/2|k|). Here, w € C stands for the complex frequency. The Z function can be
computed numerically, so that the solutions of eq. can be retrieved numerically whatever
the value of k. An example is plotted on fig. Notice that there exist an infinite number of
solutions, i.e. of eigenmodes of the linear problem. The Landau solution corresponds to the least
damped one, identified in the inset.
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Figure 1: Logarithm of the inverse of D, eq. , for k = 0.5. The extremum gives the Landau
damping: (w,,v) ~ (1.41, —0.15).

1.3.3 Physics of Landau damping

The following analysis details the physics mechanism behind Landau damping. Let’s consider
electrons immersed in a wave of the electric potential of the form ¢ = ¢y cos(kz — wt). Their
trajectory derives from their Hamiltonian H = mv?/2 — e¢:

. 0oH
T o
. OH .
mh = - = —ekoy sin(kx — wt)



Let us denote (zg,vp) the initial position and velocity of a given particle, so that:

t
z(t) = xo—l—v0t+/ dv(x, t')dt’
0

) ddv ekoy,

v(z,t) = wvo+ ov(z,t) with T —
At short times ¢ < 1, one can retain the ballistic motion only x(t) ~ x¢ + vt to compute dv, 8o
that:

sin(kx — wt)

dov  ekoy

a
Now consider those particles with an initial velocity close to the phase velocity of the wave,
namely vg = w/k + &,, with |ke,/w| < 1. For the sake of simplicity, we will assume w/k > 0
hereafter, without loss of generality. The particle acceleration then reads:

sin[k(zo + vot) — wt]

= - [sin(kxo) cos(keyt) + cos(kxg) sin(keyt)]

ddv ek )
= & Tjk sin(kxo + keyt)
ek,

Which leads to an increment of velocity (the constant C*! ensures that Jv(z,t = 0) = 0, according
to our hypothesis) which scales linearly with time:
_ e¢k . . st
v = — [sin(kzo) sin(keyt) — cos(kxo) cos(keyt)] + C
me,

€k‘¢k
m

~
~

sin(kxg) t

Whether dv will increase or decrease with time depends on the initial phase of the particle,
namely on sin(kz).

Now consider particles moving initially slightly slower than the wave, i.e. such that ¢, < 0.
Those which will be accelerated (for which dv > 0) will have their velocity getting closer to the
phase velocity, so that they will keep interacting with the wave a long time. Also, they will gain
kinetic energy since m(vo + 8,)%/2 > mv/2 (remember our convention w/k > 0). Conversely,
those which are decelerated will move further away from the resonance, hence interacting weakly
with the wave. In summary, and because energy transfer is due to resonant interactions between
waves and particles, most of the energy transfer will go from the wave to these “slow” particles.

Performing the same analysis for particles moving slightly faster ¢, > 0 would lead to the
opposite conclusion: most of the energy transfer goes from those “fast” particles to the wave.

Then, to decide whether the wave ultimately gains or looses energy, one has to count the
number of particles of each category. If the equilibrium distribution function is a Maxwellian,
then there are more particles slower than the wave than faster. As a result, the net balance will
be in favor of the particles, and the wave will loose energy. This corresponds to Landau damping.
Conversely, if the equilibrium distribution function presents a bump on the tail characterizing an
inversion of population at the phase velocity, then more energy will be transfered to the wave.
Such a regime leads to the so-called “bump-on-tail” instability.

2 Bump-on-tail instability

The so-called “bump-on-tail” instability is a kinetic instability. It develops when the equilibrium
distribution function presents a positive slope with respect to velocity in the tail. In particular,



it can occur when a low density plasma beam of finite mean velocity interacts with the bulk
plasma, at rest.
2.1 Model for the bump-on-tail instability

In the following, the bump-on-tail instability is studied by means of a simple model. Let us
consider the system described by eq. (see section .

Of 4+ 0Oy f + 0pdpdyf =0 (11)
400
¢ = fdv—1 (12)

Conversely to section , we consider an equilibrium made of 2 Maxwellians foq = fi + f2 (cf.
fig. : the bulk plasma particles fi, at rest, of density n; = (1 — ) and temperature unity, and
a beam fo of constant velocity vg, of small density ne = ¢ and temperature Ty, with € a small
positive parameter 0 < e < 1:

fo= e { (13
[ xp{‘(‘)} (14

velocity

Figure 2: Equilibrium distribution function f.q. It is made of 2 Maxwellians: foq = f1 + fo.

_ Let us consider small amplitude fluctuations around the equilibrium given by eqs.—:
d(z,t) < 1and f = feq(v) + f(z,v,t), with f < fer. Following the same procedure as the
one detailed in section , one obtains the dispersion relation for harmonic fluctuations <;~5 =
Y okw ng,w exp{i(kx —wt)}. Again, using appropriate change of variables, the dispersion relation
can be expressed in terms of the plasma dispersion function:

Dk,w)=k>+1—e) {1+ Z(C)} + Tio {1+6LZ()}+=0 (15)



where ¢; = w/(V2|k|) and (o = (w — kvo)/(v/2Tplk|). Here, w € C stands for the complex
frequency.

Qualitatively, unstable modes k are such that their phase velocity vy = w,/k (with w, =
R(w)) is in the region of the positive slope 0, fe, of the total distribution function. If the beam
has a small density ¢ and in the limit of small wave vectors (large wave length with respect to
the Debye length), then w, is roughly given by the Bohm-Gross relationship, eq. (37).
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Figure 3: Logarithm of the inverse of D, eq. (15)), for k ~ 0.377 and the equilibrium distribution
plotted on fig. [2l The extremum corresponds to the unstable solution: (w,,7) =~ (1.07,0.16).

2.2 Resonant interaction and particle trapping

The linear dispersion relation, eq. @, shows that much physics occurs at the resonance, when
particles have the resonant velocity, equal to the phase velocity vg = w/k. We show here that,
when accounting for nonlinear terms, wave-particle interaction actually also takes place in the
neighborhood of the resonance: the resonance is not a Dirac centered on vg, but exhibits some
broadening around vg. Such a physics can be addressed numerically in the frame of the bump-
on-tail instability, where the exponential growth of the electric potential perturbations in the
linear regime allows one to visualize the trapping of particles in the wave.

Let’s consider the case of a single wave of given wave vector k and frequency w: ¢ =
¢ cos(kx — wt). The resonant condition corresponds to particles having a velocity equal to
the phase velocity of the wave: vg = w/k. They are such that they see the perturbation with a
constant phase a: arp = kxg — wt = Cst, with dyxg = vg.

Close to the resonance, for particles characterized by a velocity v = vg 4+ 0, with ¥ < vg, the
Hamiltonian eq. can be Taylor expanded at first order:

H(z,v,t) ~ H(x,vR,t) + 0 0pH|y=v, (16)

Then, the equation of motion reads as follows:
diz =~ OpH|p—ypy + 0 O2H|p—vy, = vR + 0 (17)
dpv = dy0 = 0,¢ = —k¢y, sin(kr — wt) (18)



Focusing on the new set of coordinates (o, ?) instead of (z,v), one readily sees that they are
canonically conjugated with respect to the new Hamiltonian K:

@2
K=k (2 — ¢ cos a) (19)
Indeed:
diao = kdiz —w =kt =0;K (20)
div = —k¢psina = —0,K (21)

If K does not depend explicitly on time, i.e. if 0;¢p = 0, then it is a motion invariant. This
means that the trajectories follow the iso-K contours. It turns out that K is analogous to
the Hamiltonian of a pendulum[j The iso-contours of K are plotted on Fig. . Two types of
trajectories can be distinguished. From the expression of K, we get:

v = +/2(K/k + ¢y cosa) (22)

If K > k¢y, the particle trajectories are weakly affected by the wave (this corresponds to free
rotation in the pendulum case). Conversely, if K < k¢, particles are trapped in the wave and
bounce back at the turning points g = arccos{K/(k¢y)} (so-called libration motion for the
pendulum). The separatrix corresponds to the special case K = k¢y. Its width at the O-point
scales like the square-root of the magnitude of the perturbation:

0Vsep. = 4 \/ O (23)

These are those particles trapped in the wave that most interact with it. 00,y measures the
broadening of the resonance.

Figure 4: Iso-contours of the Hamiltonian K (cf. eq.). The x and y axis are respectively «
and v. v = 0 corresponds to the resonance condition, v = vg.

"The Hamiltonian for a pendulum of mass unity reads H = %RQQQ — gRcos 0, with g and R the gravity and
the rotation radius, respectively. In this case, the canonical variables are the angle § between the pendulum and
the vertical axis, and the velocity R6.



A Mathematical developments for Landau damping

A.1 Analytic continuation issue

Let’s consider the following integral:

IE/OO 9(z) dx (24)

—00 T — X0

where g(z) is some continuous and derivable function on R, and z( some real constant. Such
an integral a priori diverges due to the presence of the pole — or resonance — for z = xg. The
analytic continuation counsists in slightly modifying the integration contour so that the integral
remains well defined, while still retaining the effect of the pole. The trick is to immerge the
integrant in the complex plane z € C, with = R(z), so that the contour goes from —oo to
400 on the real axis, except at the very location of the pole which is encircled, as illustrated
on figp] From the mathematical point of view, two contours can be equally chosen arbitrarily,
namely D or D_ (see the red contours on ﬁg. The magnitude of the radius € > 0 of the
semi-circles which circumscribe the pole xg tends to zero. However, as we will show, they lead
to two different expressions for the integral I:

I = / 9(2) dz
Dy # — X0

To—€ 0o s 6 )
— lim / & dz +/ M dz ;F/ g(pree) ieewdﬁ}
=0 | J_so T — o zote £ — 20 0o To+ e —xg
The first two terms are nothing else but the principal part of the integral, which we shall denote

P [ hereafter. The last term can be recast as follows (notice that the limit e — 0 commutes with
the integral):

™

lim [ ig(xo+ ee)dd = im g(x0)

e—0 0

Finally, the integrals IL are given by:

Ii:/D ‘q(z)dz:P/OOg(w)dxqiiTrg(a:)(s(x—xo) (25)

+ zZ — X —o00 L — X0
It appears that the sign of the imaginary part depends on the contour D_ or Dy chosen to
circumscribe the pole.
A.2 Alternative expressions of the integrals /.

Cauchy’s theorem for holomorphic functions provides a way to find equivalent expressions of an
integral with different contour paths. Let us first recall the definition of holomorphic functions:

A holomorphic function is a complex-valued function of one or more complex variables
that is complex-differentiable in a neighborhood of every point in its domain[ﬂ The
existence of a complex derivative is a very strong condition, for it can be shown

8We recall that the complex-derivative of any function of a complex argument is defined as: dF(z)/dz =
lim | 0{F (20 + h) — F(20)}/|h|, with h € C. Notice especially that the derivative at zo should not depend on
the direction one approaches zp in the complex plane.

10



that it implies that any holomorphic function is actually infinitely differentiable and
equal to its own Taylor series. Put differently, the class of holomorphic functions
coincides with the class of complex analytic functions, which constitutes one of the
major theorems in complex analysis.

Cauchy’s theorem then states:

If F(z) is holomorphic within and on the closed contour C in the complex plane, then
Jo F(z)dz=0.

Conversely, the Residue theorem applies for non analytic functions. Especially:

If F(z) has N singularities z; within C, then [, F(z)dz = 2ir Zévzl Res{F'(z;)},
where Res{F'(z;)} denotes the residue at z;. Here is estimated the impact of encircling
the pole when deforming the contour.

Im(z) 1 Im(z) Contour D_

/\ e X | Re(z)
tour 0. Re@ e |\

Contour D.

Closed contour C. Closed contour C_

Figure 5: Contours of integration used in eq.(26)).

Cauchy’s theorem allows one to recast the integrals I+. First notice that F(z) = g(z)/(z—x0)
is holomorphic on and within the closed contours C+ drawn on figlj] Indeed, such contours do
explicitly exclude the pole xg. Therefore, fCi F(z)dz = 0 in virtue of Cauchy’s theorem. Notice
then that the closed contours CL+ contain the open contours Dy. More precisely:

/ 9(2) L = 0
c+ % — o

_ hm{ i < *eﬁﬂ%ﬂtié‘)id<+/°9<—f%ﬂti<>id¢>
0

e—0t | R—+o0 R+1i( — xg +e —R+1i( — xg
o e
too T EiE—1g Dy % — T0
It is easy to show that the first two integrals vanish. Indeed, Taylor expanding both ¢ and the
denominator in the limit (/R — 0 or (/(R+xz¢) — qﬂ shows that each term of the series vanishes
when integrating ¢ from 0 to €, with e — 0 (remember that g is analytic and bounded). Then, it

follows that the last two terms cancel each other. Finally, due to the analyticity of g, g(z =+ i¢)
can be replaced by g(x) in the limit € — 0 in the third integral on the right hand side, such that,

ultimately: .
I, = / 9(2) dz = / G dzx (27)
D

L2 To oo T —xg L€

90ne can indeed expand the denominator in this case since R tends to infinity. Therefore, there is no pole or
resonance, even for ¢ = 0.

11



A.3 The plasma dispersion function Z(()

The plasma dispersion function, also known as the Fried and Conte function @L is defined in the
whole complex plane ¢ € C by:

2

+oo L~z
20) = \}7?/ ;_Cdx if ¢ > 0 (28)
_ \/17? /+OO ;_IC dz +2ivme < i ¢ <0 (29)
= ;7? P/+Oo ;__IC dz +iyre S i G =0 (30)
The three cases correspond to the three contours illustrated on fig[6]
. Im(x) Im(x) . Im(x)
+
5 Re(x) S Re(x) Re(x)
-+
¢
Case {>0 Case {=0 Case <0

Figure 6: Contours of integration corresponding to the three cases eqs.(28430)).

For small magnitudes of the argument |¢| < 1, Z(¢{) can be expanded as follows:

Z(¢) ~ in'/2%e " — 2¢ [1 - ;CQ + 1% ¢+ } (31)

B Wave-particle energy transfer

The energy carried by electromagnetic waves reads as follows:
1 B? 9
Eem = = dV [ — + e F (32)
2 Ho
with E/ and B the electric and magnetic field intensity, respectively. Using Maxwell’s relations:
VxE = —8tB
.1
VxB = o) + ?atE

19B.D. Fried and S.D. Conte, The Plasma Dispersion Function (Academic Press, New York NY, 1961)

12



with GOMOCQ = 1, one can compute the time evolution of Egyy:

B
Prpy = Oem / dv ( 0,B +60E.8tE>
ot v 1o

_ /VdV (E.(V xB)-B.(VxE) E.j)

Ko

- —/dVV.(EXB>—/dVE.j
1% Ko Vv

Then, using Ostrogradsky’s formula [ dV V.F = [ dS.F, it reads:

ExB
Pun = _/ds. X —/ AV Ej (33)
S Ko \%

The first term is the integral of the Poynting vector over the closed surface encircling the consid-
ered system. It accounts for energy exchanges with the exterior. The second term accounts for
the wave-particle energy transfer within the volume of the system. Using the charge conservation
equation Oip + V.j = 0 (with p the charge density), one obtains after an integration by part:

PE]W = —/dVEj
\%4

= /VdV (¢ Orp + .0, A)

with A the vector potential: B=V x A and E = -V¢ — 0,A.

Let us consider the case of an electrostatic wave ¢ of real frequency w: ¢ = pe @t 4 ¢*eit,
The power density pgas transferred by the particles to the wave is given by:
PEM = (Z) 8t/5 = —iw (¢efiwt + ¢*eiwt) (pefiwt o p*eiwt)
— 92u Im (pd)efZiwt + p¢*)
The oscillatory first term does not contribute to any transfer on long time durations (larger than

w™1). The final result is then that the power density transferred from particles to an electrostatic
wave of frequency w, reads as follows:

peM = 2w Im(pg™) (34)

C Analytic expression of Landau damping in a limit case

Let us assume that complex frequencies w = w, + iw;, such that w; < w,, are solutions of the
dispersion relation eq.@. The ordering between the real and imaginary parts can be verified
a posteriori. In this case, D(k,w) can then be Taylor expanded as a function of this small
parameter. At first order, and denoting D = D, + iD;, this leads to:
} ~0
Wr

OD;(k,w . dD,(k,w
D(kaw) %,Dr(]ﬁwr) — Wi la(w) +Z{Di(k7wv')+wi Ta(w)
Besides, the imaginary part of the dispersion relation D; is smaller than the real part D,. Taking
the limit D; <« D,., the previous equation reduces to:

Wy

Wi — — Dz(k7w)
" 0uDr(k,w)l,,
D, (k,wy) =0
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The imaginary part w; turns out to vanish in the absence of the imaginary part of the disper-
sion relation D;, namely of the resonance condition. Let us consider the case of a Maxwellian
equilibrium:

1 2
= ——c U /2 35
Jo= 7= ¢ (35)

In this case, the imaginary part is simply:

™ Wr  _2/9k2
D.(k — o e/ 36
Z( 7w7") 9 ‘k" € ( )
The real frequency w, can be estimated in the hydrodynamical limit w, > kv, by Taylor ex-
panding the denominator of the integrand present in D,. Up to 4*" order, it reads as follows:

0 fy e V%2 dv
D, (k,wy) = kW—P/
( ) oo wr(1—kv/wy) \V2r

+00 Ly e=0*/2 [ ko kv ® dv
k2 — —_— < —+ | —
oo Wy Wy Wy V2T
kK 3kt
w wh

%

k? — =0

%

In the limit of small wave vectors k < 1, corresponding to large wavelength as compared to
Debye length, the solution is given by the Bohm—GrossE-] relationship:

w? 1+ 3k? (37)
These are the so-called Langmuir waves. In true units, they read: w? = wf,(l + 3k2)%)).

Considering the same limit to derive the expression of the imaginary part v;, = w;, one readily
finds that 0,D;(k,w)|, = 2k? at lowest order (i.e. taking w, = 1). 7z then becomes:

T Ly
fYL - \/; |k’3 € (38)

or v, = —\/7/8 wp [kAp|™® exp [-1/2(kAp)?] in true units. It turns out that vy is always
negative. It is known as the Landau damping. Waves are damped away by transferring en-
ergy to the particles. Since its first derivation in 1946, Landau damping has been the object
of much discussion, aiming at understanding the 'paradox’ of an apparently irreversible process
(the damping of the injected wave) being predicted by a collisionless — hence reversible — model,
namely Vlasov equation. Actually, the wave damping is not a dissipative process: the energy is
transferred to the particles, and the whole process occurs at constant entropy. Even after the
experimental confirmation of the effect in 1964[12], the discussion went on, and is still far from

damped away["}

1D, Bohm and E. P. Gross, “Theory of Plasma Oscillations. A. Origin of Medium-Like Behavior”, Phys. Rev.
75 (1949) 1851

127 H. Malmberg, C.B. Wharton, "Collisionless damping of electrostatic plasma waves", Phys. Rev. Lett. 13
(1964) 184

35ee e.g.: DD. Ryutov, "Landau damping: half o century with the great discovery", Plasma Phys. Contr.
Fusion 41 (1999) A1-12
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It is easy to show that such a resonant wave-particle interaction leads to wave damping by
transferring energy to the particles. Let us evaluate the electromagnetic power density Pgas
exchanged between a wave of real frequency w and an assembly of particles of charge density
Pkw- In the present case, pr, = — [ fk,wdv for electrons. As shown in appendix , Pras reads
as follows:

Py = 20S (ﬁk,wqu,w)

+00 Loy @ 7v?/2
= 2(,0%{/;00 k'U F’¢kw’2

~ teo 2 dv
= —2w |l / kve /2 m6(w — kv) NGE

2 (.4.)2
e (‘%2)

which is always negative.
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