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This document discusses the physics of Landau damping and Bump-on-tail instability on the

basis of a 2-dimensional kinetic model (1D-1V). They both rely on the same equations, namely

Vlasov for the electrons (ions are assumed at rest) and Poisson. The only di�erence comes

from the equilibrium distribution function one considers, which is either a centered Maxwellian

(Landau) or a centered Maxwellian with a bump on the tail (bump-on-tail). Wile the former is

stable � energy is transferred from the electrostatic wave to particles, the latter reveals unstable

� the perturbed wave grows exponentially in time in the linear regime.

1 Resonance and Landau damping

Following the pioneering work of Landau on the subject in 19461, one considers the collisionless

dynamics of non relativistic electrons, embedded in a strong uniform magnetic �eld. The problem

is assumed to be electrostatic, and the ions are at rest with a density n0. The electron distribution
function f and the electric potential φ then compose a self consistent system governed by the

Vlasov and Poisson equations:

∂τf + v ∂xf + ∂xφ∂vf = 0 (1)

∂2xφ =

∫ +∞

−∞
fdv − 1

Here, the radial position r along the magnetic �eld is normalized to the Debye length x ≡ r/λD =
r/(ε0T/nee

2)1/2, time t by the inverse of the electron plasma frequency τ ≡ ωpet =vTet/λD and

velocity by the thermal velocity vTe = (Te/me)
1/2: v =v/vTe. Also, the distribution function

is normalized by vTe/ne (f → fvTe/ne) and the electric potential Φ by Te/e: φ = eΦ/Te. The
problem is two-dimensional in phase space (x, v). We will focus on the linear characteristics of

the system (1).

1L.D. Landau (1946), "On the vibrations of the electronic plasma", in "Collected papers of L.D.Landau", D.
Ter Haar Editor, Pergamon Press, 1965, 61, p.445
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The Vlasov equation can be rewritten in the Hamiltonian framework. Let H be the dimen-

sionless Hamiltonian of the system, sum of kinetic and potential energies:

H =
v2

2
− φ (2)

the minus sign coming from the electron charge. Then, eq.(1) can be recast as follows:

∂tf − {H, f} = 0 (3)

with {H, f} the Poisson brackets: {H, f} = ∂xH∂vf − ∂vH∂xf (notice that it also admits the

equivalent expression: {H, f} = ∂v(f∂xH) − ∂x(f∂vH)). x and v are canonically conjugated

with respect to H:

dtx = ∂vH = v (4)

dtv = −∂xH = ∂xφ (5)

This formulation allows one to straightforwardly show that both the total entropy S = −〈f ln f〉x,v
and energy E = 1

2

[
〈v2f〉x,v + 〈(∂xφ)2〉x

]
are conserved, where the brackets 〈...〉x,v stand for the

integral over the entire phase space 〈...〉x,v =
∫
dx
∫
dv....

Indeed, multiplying eq.(3) by H and integrating over space and velocity leads to:

〈H∂tf〉x,v −
1

2

〈
{H2, f}

〉
x,v

= 0

Assuming periodic boundary conditions in x, the second term vanishes (use the second expression

of the Poisson brackets). The former contains two contributions. One associated to the energy

of the particles: 1
2〈v

2f〉x,v, the other one associated to the waves: −〈φ∂tf〉x,v. Using Poisson

and integrating by part, this latter term can be recast as 〈∂xφ∂t(∂xφ)〉x = d

dt
1
2〈(∂xφ)2〉x, which

completes the demonstration.

A similar analysis can be done for the entropy. Noticing that (f ln f)′ = (1 + ln f)f ′ (where the
prime ′ denotes any derivative with respect to t, x or v), one gets: d

dtS = −〈(1+ln f){H, f}〉x,v =
−〈{H, f ln f}〉x,v = 0.

1.1 The dispersion relation

Let us consider perturbations around a given stationary equilibrium, characterized by a vanish-

ing electric �eld, φeq = 0. The Vlasov equation constrains the equilibrium distribution function

to depend on the velocity only: feq(v). The total distribution function f(x, v, t) then takes the

form: f(x, v, t) = feq(v) + f̃(x, v, t), with 〈f̃〉 = 0 by de�nition. Here, the brackets refer to space

average.

In the limit of small perturbations f̃ � feq, the non linear term can be linearized and

restricted to ∂xφ̃ ∂vfeq � the non linearity ∂xφ̃ ∂vf̃ being of the second order. At leading order,

the system (1) then reduces to:

∂τ f̃ + v ∂xf̃ + ∂xφ̃ ∂vfeq = 0 (6)

∂2xφ̃ =

∫ +∞

−∞
f̃dv

Consistently with the hypothesis φeq = 0, the electron and ion equilibrium densities are equal to

n0.
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Since the system (6) is linear and feq depends on the velocity only, plane waves of the form

exp{i(kx− ωt)} are eigenvectors 2 . For such waves, the linearized system transforms into:

−i(ω − kv)f̂k,ω + ikφ̂k,ω ∂vfeq = 0

−k2φ̂k,ω =

∫ +∞

−∞
f̂k,ωdv

Combining these two equations leads to the dispersion relation:

D(k, ω) = k2 +

∫ +∞

−∞

k ∂vfeq
ω − kv

dv = 0 (7)

As such, the dispersion relation remains ill posed. Indeed, the integrand contains the pole ω/k
when ω is real � corresponding to the resonant condition ω = kv from the physical point of

view. So as to ensure the continuity of the integral when ω crosses the real axes3, the integral

needs being analytically continued. Such an analytic continuation proceeds by the deformation

of the integration contour into the complex plane, so as to circumscribe the pole. As detailed in

Appendix A, the result then depends of the choice of the new contour, and more precisely on

whether the pole is encircled in the upper or in the lower part of the imaginary domain of the

complex plane (see �g.5). The mathematics do not provide any preference for this choice: only

the physics can bring some constraints to decide which contour, if any, should be chosen.

The crucial breakthrough of Landau was to remark that any real value of ω was not permitted.

Landau invoked the causality principle, which states that any physical process originates from a

cause. Such a principle then imposes any wave to vanish at t → −∞. Consequently, any real

ω should be understood as, and replaced by, ω + iε, with ε > 0. This is usually referred to as

Landau's prescription. In this case, the wave exp{i(kx−ωt)} transforms into exp{i(kx−ωt)+εt},
which vanishes at t→ −∞, consistently with the causality principle. As shown in Appendix A,

such an integral is equivalent to choosing one of the two contours of integration mentioned above.

As we will see hereafter, such a causality principle leads to fundamental physical processes.

1.2 Consequence of Landau's prescription

So as to ensure the analytic continuation, and following Landau's prescription regarding the

contour of integration, the dispersion relation eq.(7) should be understood as follows, as long as

the imaginary part of ω is zero =(ω) = 0 (the general case ω ∈ C makes use of the Fried and

Conte function when feq is Maxwellian, as detailed in Appendix A):

D(k, ω) = k2 + lim
ε→0+

∫ +∞

−∞

k ∂vfeq
ω − kv + iε

dv = 0 (8)

Multiplying both numerator and denominator of the integrand by the complex conjugate leads

to the two following integrals:∫ +∞

−∞

∂vfeq
ω − kv + iε

dv =

∫ +∞

−∞

(ω − kv) ∂vfeq
(ω − kv)2 + ε2

dv − i
∫ +∞

−∞

ε ∂vfeq
(ω − kv)2 + ε2

dv

2Landau �rst introduced the concept of causality in this problem, by noticing that the waves should vanish
at t → −∞. In this framework, Laplace transform in time should be preferred. However, such a change does
not modify the dispersion relation. The rigorous treatment can be found, for instance, in the original paper by
Landau (1946).

3Notice that such a property is not mandatory a priori : imposing the continuity of the integral reveals a strong
assumption, with critical consequences that are detailed below.
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In the limit ε → 0+, the �rst integral is nothing but the principal part4. As far as the second

integral is concerned, it involves the Lorentzian function of the type Lε(Ω) = ε/(Ω2 + ε2). Lε
peaks at ε−1 for Ω = 0, and its half width at half maximum is equal to ε. It tends to the Dirac

distribution πδ(Ω) when ε vanishes5. Should ε remain �nite because it would be governed by

some physical process (such as collisions and turbulence), the Dirac should then be replaced by

the �nite width Lorentzian. In this case, the resonance condition would be broadened, and occur

up to the distance ε/k around the pole v = ω/k. In the end, eq.(8) leads to:

D(k, ω) = k2 + P

∫ +∞

−∞

k ∂vfeq
ω − kv

dv − iπ k

|k|
∂vfeq|v=ω/k = 0 (9)

where P
∫
stands for the principal part of the integral, namely:

P

∫ +∞

−∞

dx

x− x0
≡ lim

ε→0

{∫ x0−ε

−∞

dx

x− x0
+

∫ +∞

x0+ε

dx

x− x0

}
Details of the treatment can be found in various books 6. The imaginary part of the dispersion

relation accounts for the resonance.

1.3 Landau damping

As we will discuss here, the correct treatment of the pole (or "resonance" when adopting the

physicist point of view) ω = kv in the dispersion relation eq.(9), leading to the imaginary term

Di ≡ −π(k/|k|) ∂vfeq|v=ω/k, governs an important piece of physics.

1.3.1 Analytic treatment in a limit case

The dispersion relation eq.(9) cannot be solved analytically without making simplifying assump-

tions. Such an approach is detailed in Appendix C. There, Langmuir waves are shown to be

damped, the damping rate resulting from the treatment introduced by Landau.

In the general case, i.e. without any assumption regarding either the real and imaginary

parts of the frequency ω or the wave vector k, eq.(9) requires a numerical treatment. This latter

approach is detailed in next section.

4First decompose the integral in two parts:
∫ +∞
−∞

Ω g(v)

Ω2+ε2
dv =

∫ vϕ
−∞

Ω g(v)

Ω2+ε2
dv +

∫ +∞
vϕ

Ω g(v)

Ω2+ε2
dv, with vϕ = ω/k

the phase velocity and Ω = ω − kv. With the change of variable v → Ω, these integrals read:
∫ +∞
−∞

Ω g(v)

Ω2+ε2
dv =∫ +∞

0

Ω g((ω−Ω)/k)

Ω2+ε2
dΩ
|k| +

∫ 0

−∞
Ω g((ω−Ω)/k)

Ω2+ε2
dΩ
|k| . Secondly, notice that

∫ 0

−∞
Ω G(Ω)

Ω2+ε2
dΩ =

∫ −ε
−∞

G(−
√
$2−ε2)

$
d$, where

the bijective change of variable Ω→ $ = −
√

Ω2 + ε2 has been done in the R− half space (in particular, $d$ =

ΩdΩ). Provided G is continuous in R−, then the latter integral reduces to
∫ 0−

−∞
G($)
$

d$ in the limit ε → 0+.
A similar treatment can be performed for the integral from 0 to +∞. Adding both contributions leads to the
expression of the principal part.

5Let's introduce Ω = ω − kv. Then:
∫ +∞
−∞

ε dv
(ω−kv)2+ε2

=
∫ +∞
−∞

ε
Ω2+ε2

dΩ
|k| = sign(ε)

|k|

∫ +∞
−∞

dy
1+y2

, where y = Ω/ε.

Further de�ning θ such that tan θ = y, one �nds:
∫ +∞
−∞

dy
1+y2

=
∫ π/2
−π/2 dθ = π. Hence, the integral of the Lorentzian

function Lε(Ω) = ε/(Ω2 + ε2) does not depend on the magnitude of ε. Furthermore, its maximum is equal to 1/ε,
while its width at half the maximum is 2ε. Such characteristics lead to the conclusion that limε→0+ Lε(Ω) = πδ(Ω).
Finally, remember that δ(ω − kv) = δ(ω/k − v)/|k|.

6see for instance �Introduction to Plasma Physics�, R.J. Goldston and P.H. Rutherford, Institute of Physics
Publishing (2003)
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1.3.2 Numerical treatment using the Plasma Dispersion Function

Injecting the Maxwellian equilibrium distribution function eq. (35) in the dispersion relation

eq. (7) leads to:

D(k, ω) = 1 + k2 − ω
∫ +∞

−∞

e−v
2/2

ω − kv
dv√
2π

= 0

where the integral should be properly analytically continued. Such an integral is actually related

to the so-called Plasma Dispersion Function Z(ζ) given in Appendix A. It can be rewritten as

follows:

D(k, ω) = 1 + k2 + ζ Z(ζ) = 0 (10)

where ζ = ω/(
√

2|k|). Here, ω ∈ C stands for the complex frequency. The Z function can be

computed numerically, so that the solutions of eq. (10) can be retrieved numerically whatever

the value of k. An example is plotted on �g. 1. Notice that there exist an in�nite number of

solutions, i.e. of eigenmodes of the linear problem. The Landau solution corresponds to the least

damped one, identi�ed in the inset.

Figure 1: Logarithm of the inverse of D, eq. (10), for k = 0.5. The extremum gives the Landau

damping: (ωr, γ) ≈ (1.41,−0.15).

1.3.3 Physics of Landau damping

The following analysis details the physics mechanism behind Landau damping. Let's consider

electrons immersed in a wave of the electric potential of the form φ = φk cos(kx − ωt). Their

trajectory derives from their Hamiltonian H = mv2/2− eφ:

ẋ =
∂H

m∂v
= v

mv̇ = −∂H
∂x

= −ekφk sin(kx− ωt)
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Let us denote (x0, v0) the initial position and velocity of a given particle, so that:

x(t) = x0 + v0t+

∫ t

0
δv(x, t′)dt′

v(x, t) = v0 + δv(x, t) with
d δv

dt
= −ekφk

m
sin(kx− ωt)

At short times t� 1, one can retain the ballistic motion only x(t) ≈ x0 + v0t to compute δv, so
that:

d δv

dt
≈ −ekφk

m
sin[k(x0 + v0t)− ωt]

Now consider those particles with an initial velocity close to the phase velocity of the wave,

namely v0 = ω/k + εv, with |kεv/ω| � 1. For the sake of simplicity, we will assume ω/k > 0
hereafter, without loss of generality. The particle acceleration then reads:

d δv

dt
≈ −ekφk

m
sin(kx0 + kεvt)

= −ekφk
m

[sin(kx0) cos(kεvt) + cos(kx0) sin(kεvt)]

Which leads to an increment of velocity (the constant Cst ensures that δv(x, t = 0) = 0, according
to our hypothesis) which scales linearly with time:

δv = − eφk
mεv

[sin(kx0) sin(kεvt)− cos(kx0) cos(kεvt)] + Cst

≈ −ekφk
m

sin(kx0) t

Whether δv will increase or decrease with time depends on the initial phase of the particle,

namely on sin(kx0).

Now consider particles moving initially slightly slower than the wave, i.e. such that εv < 0.
Those which will be accelerated (for which δv > 0) will have their velocity getting closer to the

phase velocity, so that they will keep interacting with the wave a long time. Also, they will gain

kinetic energy since m(v0 + δv)
2/2 > mv20/2 (remember our convention ω/k > 0). Conversely,

those which are decelerated will move further away from the resonance, hence interacting weakly

with the wave. In summary, and because energy transfer is due to resonant interactions between

waves and particles, most of the energy transfer will go from the wave to these �slow� particles.

Performing the same analysis for particles moving slightly faster εv > 0 would lead to the

opposite conclusion: most of the energy transfer goes from those �fast� particles to the wave.

Then, to decide whether the wave ultimately gains or looses energy, one has to count the

number of particles of each category. If the equilibrium distribution function is a Maxwellian,

then there are more particles slower than the wave than faster. As a result, the net balance will

be in favor of the particles, and the wave will loose energy. This corresponds to Landau damping.

Conversely, if the equilibrium distribution function presents a bump on the tail characterizing an

inversion of population at the phase velocity, then more energy will be transfered to the wave.

Such a regime leads to the so-called �bump-on-tail� instability.

2 Bump-on-tail instability

The so-called �bump-on-tail� instability is a kinetic instability. It develops when the equilibrium

distribution function presents a positive slope with respect to velocity in the tail. In particular,
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it can occur when a low density plasma beam of �nite mean velocity interacts with the bulk

plasma, at rest.

2.1 Model for the bump-on-tail instability

In the following, the bump-on-tail instability is studied by means of a simple model. Let us

consider the system described by eq.(1) (see section 1).

∂tf + v∂xf + ∂xφ∂vf = 0 (11)

∂2xφ =

∫ +∞

−∞
fdv − 1 (12)

Conversely to section 1, we consider an equilibrium made of 2 Maxwellians feq = f1 + f2 (cf.

�g. 2): the bulk plasma particles f1, at rest, of density n1 = (1− ε) and temperature unity, and

a beam f2 of constant velocity v0, of small density n2 = ε and temperature T0, with ε a small

positive parameter 0 ≤ ε ≤ 1:

f1 =
1− ε√

2π
exp

{
−v2

2

}
(13)

f2 =
ε√

2πT0
exp

{
−(v − v0)2

2T0

}
(14)

The equilibrium electric potential is vanishing: φeq = 0.

Figure 2: Equilibrium distribution function feq. It is made of 2 Maxwellians: feq = f1 + f2.

Let us consider small amplitude �uctuations around the equilibrium given by eqs.(13)-(14):

φ̃(x, t) � 1 and f = feq(v) + f̃(x, v, t), with f̃ � feq. Following the same procedure as the

one detailed in section 1, one obtains the dispersion relation for harmonic �uctuations φ̃ =∑
k,ω φ̂k,ω exp{i(kx− ωt)}. Again, using appropriate change of variables, the dispersion relation

can be expressed in terms of the plasma dispersion function:

D(k, ω) = k2 + (1− ε) {1 + ζ1 Z(ζ1)}+
ε

T0
{1 + ζ2 Z(ζ2)}+ = 0 (15)
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where ζ1 = ω/(
√

2|k|) and ζ2 = (ω − kv0)/(
√

2T0|k|). Here, ω ∈ C stands for the complex

frequency.

Qualitatively, unstable modes k are such that their phase velocity vϕ,k = ωr/k (with ωr =
<(ω)) is in the region of the positive slope ∂vfeq of the total distribution function. If the beam

has a small density ε and in the limit of small wave vectors (large wave length with respect to

the Debye length), then ωr is roughly given by the Bohm-Gross relationship, eq. (37).

Figure 3: Logarithm of the inverse of D, eq. (15), for k ≈ 0.377 and the equilibrium distribution

plotted on �g. 2. The extremum corresponds to the unstable solution: (ωr, γ) ≈ (1.07, 0.16).

2.2 Resonant interaction and particle trapping

The linear dispersion relation, eq. (9), shows that much physics occurs at the resonance, when

particles have the resonant velocity, equal to the phase velocity vR = ω/k. We show here that,

when accounting for nonlinear terms, wave-particle interaction actually also takes place in the

neighborhood of the resonance: the resonance is not a Dirac centered on vR, but exhibits some

broadening around vR. Such a physics can be addressed numerically in the frame of the bump-

on-tail instability, where the exponential growth of the electric potential perturbations in the

linear regime allows one to visualize the trapping of particles in the wave.

Let's consider the case of a single wave of given wave vector k and frequency ω: φ =
φk cos(kx − ωt). The resonant condition corresponds to particles having a velocity equal to

the phase velocity of the wave: vR = ω/k. They are such that they see the perturbation with a

constant phase α: αR = kxR − ωt = Cst, with dtxR = vR.
Close to the resonance, for particles characterized by a velocity v = vR + ṽ, with ṽ � vR, the

Hamiltonian eq.(2) can be Taylor expanded at �rst order:

H(x, v, t) ≈ H(x, vR, t) + ṽ ∂vH|v=vR (16)

Then, the equation of motion reads as follows:

dtx ≈ ∂vH|v=vR + ṽ ∂2vH|v=vR = vR + ṽ (17)

dtv = dtṽ = ∂xφ = −kφk sin(kx− ωt) (18)
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Focusing on the new set of coordinates (α, ṽ) instead of (x, v), one readily sees that they are

canonically conjugated with respect to the new Hamiltonian K:

K ≡ k
(
ṽ2

2
− φk cosα

)
(19)

Indeed:

dtα = k dtx− ω = kṽ = ∂ṽK (20)

dtṽ = −kφk sinα = −∂αK (21)

If K does not depend explicitly on time, i.e. if ∂tφk = 0, then it is a motion invariant. This

means that the trajectories follow the iso-K contours. It turns out that K is analogous to

the Hamiltonian of a pendulum7 The iso-contours of K are plotted on Fig. 4. Two types of

trajectories can be distinguished. From the expression of K, we get:

ṽ = ±
√

2(K/k + φk cosα) (22)

If K > kφk, the particle trajectories are weakly a�ected by the wave (this corresponds to free

rotation in the pendulum case). Conversely, if K < kφk, particles are trapped in the wave and

bounce back at the turning points α0 = arccos{K/(kφk)} (so-called libration motion for the

pendulum). The separatrix corresponds to the special case K = kφk. Its width at the O-point

scales like the square-root of the magnitude of the perturbation:

δṽsep. = 4
√
φk (23)

These are those particles trapped in the wave that most interact with it. δṽsep. measures the

broadening of the resonance.

Figure 4: Iso-contours of the Hamiltonian K (cf. eq.(19)). The x and y axis are respectively α
and ṽ. ṽ = 0 corresponds to the resonance condition, v = vR.

7The Hamiltonian for a pendulum of mass unity reads H = 1
2
R2θ̇2 − gR cos θ, with g and R the gravity and

the rotation radius, respectively. In this case, the canonical variables are the angle θ between the pendulum and
the vertical axis, and the velocity Rθ̇.
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A Mathematical developments for Landau damping

A.1 Analytic continuation issue

Let's consider the following integral:

I ≡
∫ ∞
−∞

g(x)

x− x0
dx (24)

where g(x) is some continuous and derivable function on R, and x0 some real constant. Such

an integral a priori diverges due to the presence of the pole � or resonance � for x = x0. The

analytic continuation consists in slightly modifying the integration contour so that the integral

remains well de�ned, while still retaining the e�ect of the pole. The trick is to immerge the

integrant in the complex plane z ∈ C, with x = <(z), so that the contour goes from −∞ to

+∞ on the real axis, except at the very location of the pole which is encircled, as illustrated

on �g.5. From the mathematical point of view, two contours can be equally chosen arbitrarily,

namely D+ or D− (see the red contours on �g.5). The magnitude of the radius ε > 0 of the

semi-circles which circumscribe the pole x0 tends to zero. However, as we will show, they lead

to two di�erent expressions for the integral I:

I± ≡
∫
D±

g(z)

z − x0
dz

= lim
ε→0

{∫ x0−ε

−∞

g(x)

x− x0
dx+

∫ ∞
x0+ε

g(x)

x− x0
dx∓

∫ π

0

g(x0 + εeiθ)

x0 + εeiθ − x0
iεeiθdθ

}
The �rst two terms are nothing else but the principal part of the integral, which we shall denote

P
∫
hereafter. The last term can be recast as follows (notice that the limit ε→ 0 commutes with

the integral):

lim
ε→0

∫ π

0
i g(x0 + εeiθ)dθ = iπ g(x0)

Finally, the integrals I± are given by:

I± ≡
∫
D±

g(z)

z − x0
dz = P

∫ ∞
−∞

g(x)

x− x0
dx∓ iπ g(x) δ(x− x0) (25)

It appears that the sign of the imaginary part depends on the contour D− or D+ chosen to

circumscribe the pole.

A.2 Alternative expressions of the integrals I±

Cauchy's theorem for holomorphic functions provides a way to �nd equivalent expressions of an

integral with di�erent contour paths. Let us �rst recall the de�nition of holomorphic functions:

A holomorphic function is a complex-valued function of one or more complex variables

that is complex-di�erentiable in a neighborhood of every point in its domain8. The

existence of a complex derivative is a very strong condition, for it can be shown

8We recall that the complex-derivative of any function of a complex argument is de�ned as: dF (z)/dz ≡
lim|h|→0{F (z0 + h) − F (z0)}/|h|, with h ∈ C. Notice especially that the derivative at z0 should not depend on
the direction one approaches z0 in the complex plane.
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that it implies that any holomorphic function is actually in�nitely di�erentiable and

equal to its own Taylor series. Put di�erently, the class of holomorphic functions

coincides with the class of complex analytic functions, which constitutes one of the

major theorems in complex analysis.

Cauchy's theorem then states:

If F (z) is holomorphic within and on the closed contour C in the complex plane, then∫
C F (z)dz = 0.

Conversely, the Residue theorem applies for non analytic functions. Especially:

If F (z) has N singularities zj within C, then
∫
C F (z)dz = 2iπ

∑N
j=1 Res{F (zj)},

where Res{F (zj)} denotes the residue at zj . Here is estimated the impact of encircling

the pole when deforming the contour.

Figure 5: Contours of integration used in eq.(26).

Cauchy's theorem allows one to recast the integrals I±. First notice that F (z) ≡ g(z)/(z−x0)
is holomorphic on and within the closed contours C± drawn on �g.5. Indeed, such contours do

explicitly exclude the pole x0. Therefore,
∫
C± F (z)dz = 0 in virtue of Cauchy's theorem. Notice

then that the closed contours C± contain the open contours D±. More precisely:∫
C±

g(z)

z − x0
dz = 0

= lim
ε→0+

{
lim

R→+∞

(∫ ±ε
0

g(R± iζ)

R± iζ − x0
idζ +

∫ 0

±ε

g(−R± iζ)

−R± iζ − x0
idζ

)
+

∫ −∞
+∞

g(x± iε)
x± iε− x0

dx+

∫
D±

g(z)

z − x0
dz

}
(26)

It is easy to show that the �rst two integrals vanish. Indeed, Taylor expanding both g and the

denominator in the limit ζ/R→ 0 or ζ/(R±x0)→ 09 shows that each term of the series vanishes

when integrating ζ from 0 to ε, with ε→ 0 (remember that g is analytic and bounded). Then, it

follows that the last two terms cancel each other. Finally, due to the analyticity of g, g(x± iε)
can be replaced by g(x) in the limit ε→ 0 in the third integral on the right hand side, such that,

ultimately:

I± ≡
∫
D±

g(z)

z − x0
dz =

∫ +∞

−∞

g(x)

x− x0 ± iε
dx (27)

9One can indeed expand the denominator in this case since R tends to in�nity. Therefore, there is no pole or
resonance, even for ζ = 0.
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A.3 The plasma dispersion function Z(ζ)

The plasma dispersion function, also known as the Fried and Conte function 10, is de�ned in the

whole complex plane ζ ∈ C by:

Z(ζ) =
1√
π

∫ +∞

−∞

e−x
2

x− ζ
dx if ζi > 0 (28)

=
1√
π

∫ +∞

−∞

e−x
2

x− ζ
dx+ 2i

√
π e−ζ

2
if ζi < 0 (29)

=
1√
π
P

∫ +∞

−∞

e−x
2

x− ζ
dx+ i

√
π e−ζ

2
if ζi = 0 (30)

The three cases correspond to the three contours illustrated on �g.6.

Figure 6: Contours of integration corresponding to the three cases eqs.(28-30).

For small magnitudes of the argument |ζ| � 1, Z(ζ) can be expanded as follows:

Z(ζ) ≈ iπ1/2e−ζ2 − 2ζ

[
1− 2

3
ζ2 +

4

15
ζ4 + ...

]
(31)

B Wave-particle energy transfer

The energy carried by electromagnetic waves reads as follows:

EEM =
1

2

∫
dV

(
B2

µ0
+ ε0E

2

)
(32)

with E and B the electric and magnetic �eld intensity, respectively. Using Maxwell's relations:

∇∇∇×E = −∂tB

∇∇∇×B = µ0j +
1

c2
∂tE

10B.D. Fried and S.D. Conte, The Plasma Dispersion Function (Academic Press, New York NY, 1961)
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with ε0µ0c
2 = 1, one can compute the time evolution of EEM :

PEM ≡
∂EEM
∂t

=

∫
V
dV

(
B

µ0
. ∂tB + ε0E.∂tE

)
=

∫
V
dV

(
E.(∇∇∇×B)−B.(∇∇∇×E)

µ0
−E.j

)
= −

∫
V
dV ∇∇∇.

(
E×B

µ0

)
−
∫
V
dV E.j

Then, using Ostrogradsky's formula
∫
dV ∇∇∇.F =

∫
dS.F, it reads:

PEM = −
∫
S
dS.

E×B

µ0
−
∫
V
dV E.j (33)

The �rst term is the integral of the Poynting vector over the closed surface encircling the consid-

ered system. It accounts for energy exchanges with the exterior. The second term accounts for

the wave-particle energy transfer within the volume of the system. Using the charge conservation

equation ∂tρ+∇∇∇.j = 0 (with ρ the charge density), one obtains after an integration by part:

PEM ≡ −
∫
V
dV E.j

=

∫
V
dV (φ ∂tρ+ j.∂tA)

with A the vector potential: B =∇∇∇×A and E = −∇∇∇φ− ∂tA.

Let us consider the case of an electrostatic wave φ̃ of real frequency ω: φ̃ = φe−iωt + φ∗eiωt.
The power density pEM transferred by the particles to the wave is given by:

pEM = φ̃ ∂tρ̃ = −iω
(
φe−iωt + φ∗eiωt

) (
ρe−iωt − ρ∗eiωt

)
= 2ω Im

(
ρφe−2iωt + ρφ∗

)
The oscillatory �rst term does not contribute to any transfer on long time durations (larger than

ω−1). The �nal result is then that the power density transferred from particles to an electrostatic

wave of frequency ω, reads as follows:

pEM = 2ω Im(ρφ∗) (34)

C Analytic expression of Landau damping in a limit case

Let us assume that complex frequencies ω = ωr + iωi, such that ωi � ωr, are solutions of the

dispersion relation eq.(9). The ordering between the real and imaginary parts can be veri�ed

a posteriori. In this case, D(k, ω) can then be Taylor expanded as a function of this small

parameter. At �rst order, and denoting D = Dr + iDi, this leads to:

D(k, ω) ≈ Dr(k, ωr)− ωi
∂Di(k, ω)

∂ω

∣∣∣∣
ωr

+ i

{
Di(k, ωr) + ωi

∂Dr(k, ω)

∂ω

∣∣∣∣
ωr

}
= 0

Besides, the imaginary part of the dispersion relation Di is smaller than the real part Dr. Taking
the limit Di � Dr, the previous equation reduces to:

ωi = − Di(k, ω)

∂ωDr(k, ω)|ωr
Dr(k, ωr) = 0
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The imaginary part ωi turns out to vanish in the absence of the imaginary part of the disper-

sion relation Di, namely of the resonance condition. Let us consider the case of a Maxwellian

equilibrium:

feq =
1√
2π

e−v
2/2 (35)

In this case, the imaginary part is simply:

Di(k, ωr) =

√
π

2

ωr
|k|

e−ω
2
r/2k

2
(36)

The real frequency ωr can be estimated in the hydrodynamical limit ωr � kv, by Taylor ex-

panding the denominator of the integrand present in Dr. Up to 4th order, it reads as follows:

Dr(k, ωr) = k2 − P
∫ +∞

−∞

kv e−v
2/2

ωr(1− kv/ωr)
dv√
2π

≈ k2 −
∫ +∞

−∞

kv e−v
2/2

ωr

{
kv

ωr
+

(
kv

ωr

)3
}

dv√
2π

≈ k2 − k2

ω2
r

− 3k4

ω4
r

= 0

In the limit of small wave vectors k � 1, corresponding to large wavelength as compared to

Debye length, the solution is given by the Bohm-Gross11 relationship:

ω2
r ≈ 1 + 3k2 (37)

These are the so-called Langmuir waves. In true units, they read: ω2
r = ω2

p(1 + 3k2λ2D).

Considering the same limit to derive the expression of the imaginary part γL ≡ ωi, one readily
�nds that ∂ωDr(k, ω)|ωr = 2k2 at lowest order (i.e. taking ωr = 1). γL then becomes:

γL = −
√
π

8

1

|k|3
e−1/2k

2
(38)

or γL = −
√
π/8 ωp |kλD|−3 exp

[
−1/2(kλD)2

]
in true units. It turns out that γL is always

negative. It is known as the Landau damping. Waves are damped away by transferring en-

ergy to the particles. Since its �rst derivation in 1946, Landau damping has been the object

of much discussion, aiming at understanding the 'paradox' of an apparently irreversible process

(the damping of the injected wave) being predicted by a collisionless − hence reversible − model,

namely Vlasov equation. Actually, the wave damping is not a dissipative process: the energy is

transferred to the particles, and the whole process occurs at constant entropy. Even after the

experimental con�rmation of the e�ect in 196412, the discussion went on, and is still far from

damped away13.

11D. Bohm and E. P. Gross, �Theory of Plasma Oscillations. A. Origin of Medium-Like Behavior�, Phys. Rev.

75 (1949) 1851
12J.H. Malmberg, C.B. Wharton, "Collisionless damping of electrostatic plasma waves", Phys. Rev. Lett. 13

(1964) 184
13see e.g.: DD. Ryutov, "Landau damping: half a century with the great discovery", Plasma Phys. Contr.

Fusion 41 (1999) A1-12
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It is easy to show that such a resonant wave-particle interaction leads to wave damping by

transferring energy to the particles. Let us evaluate the electromagnetic power density PEM
exchanged between a wave of real frequency ω and an assembly of particles of charge density

ρ̂k,ω. In the present case, ρ̂k,ω = −
∫
f̂k,ωdv for electrons. As shown in appendix B, PEM reads

as follows:

PEM = 2ω=
(
ρ̂k,ωφ̂

∗
k,ω

)
= 2ω =

{∫ +∞

−∞

kv e−v
2/2

ω − kv
dv√
2π
|φ̂k,ω|2

}

= −2ω |φ̂k,ω|2
∫ +∞

−∞
kv e−v

2/2 πδ(ω − kv)
dv√
2π

= −
√

2π |φ̂k,ω|2
ω2

|k|
exp

(
− ω2

2k2

)
which is always negative.
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